Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
Z
zhichan
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
蒋勇
zhichan
Commits
cfffb64a
Commit
cfffb64a
authored
Jan 02, 2020
by
宋毅
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fanhui_third
parent
eefcb9ed
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
47 additions
and
32 deletions
+47
-32
rpt_result/main.py
+47
-32
No files found.
rpt_result/main.py
View file @
cfffb64a
...
@@ -32,12 +32,12 @@ def CreatBdictFromJson(new_status):
...
@@ -32,12 +32,12 @@ def CreatBdictFromJson(new_status):
"status"
:
""
"status"
:
""
}
}
dict_all
[
linesplit
[
4
]
.
replace
(
'"'
,
""
)]
=
tax_index
dict_all
[
linesplit
[
4
]
.
replace
(
'"'
,
""
)]
=
tax_index
print
(
dict_all
)
#
print(dict_all)
# 获取传入的参数
# 获取传入的参数
new_status
=
new_status
new_status
=
new_status
for
factors_name
,
value
in
dict_all
.
items
():
for
factors_name
,
value
in
dict_all
.
items
():
dict_all
[
factors_name
][
"status"
]
=
new_status
[
factors_name
]
dict_all
[
factors_name
][
"status"
]
=
new_status
[
factors_name
]
print
(
dict_all
)
#
print(dict_all)
# 计算总体风险异常比例、以及被监控风险比例和被稽查风险比例
# 计算总体风险异常比例、以及被监控风险比例和被稽查风险比例
qualified
=
[]
# 合格
qualified
=
[]
# 合格
...
@@ -66,16 +66,16 @@ def CreatBdictFromJson(new_status):
...
@@ -66,16 +66,16 @@ def CreatBdictFromJson(new_status):
for
k1
,
v1
in
rules
.
items
():
for
k1
,
v1
in
rules
.
items
():
if
k1
:
if
k1
:
ALLRisk
=
v1
ALLRisk
=
v1
print
(
ALLRisk
)
print
(
ALLRisk
,
"+++++++++++++"
)
return
dict_all
,
ALLRisk
return
dict_all
,
ALLRisk
# 输入计算出的风险异常比例,返回提示结果
# 输入计算出的风险异常比例,返回提示结果
def
RiskAbnormal
(
t_r1
):
def
RiskAbnormal
(
t_r1
):
RiskA
=
{}
RiskA
=
{}
t_r1
=
t_r1
t_r1
_s
=
str
(
int
(
t_r1
.
replace
(
"
%
"
,
""
))
/
100
)
rules_1
=
{
"t_r1
<='30
%
'"
:
"企业风险异常同比其他企业比例较低"
,
rules_1
=
{
"t_r1
_s<='0.3
'"
:
"企业风险异常同比其他企业比例较低"
,
"t_r1
>'30
%
'"
:
"企业风险异常同比其他企业比例明显偏高"
"t_r1
_s>'0.3
'"
:
"企业风险异常同比其他企业比例明显偏高"
}
}
for
k1
,
v1
in
rules_1
.
items
():
for
k1
,
v1
in
rules_1
.
items
():
if
eval
(
str
(
k1
)):
if
eval
(
str
(
k1
)):
...
@@ -85,23 +85,23 @@ def RiskAbnormal(t_r1):
...
@@ -85,23 +85,23 @@ def RiskAbnormal(t_r1):
# 输入计算出的被检测风险值,判断被监测风险结果
# 输入计算出的被检测风险值,判断被监测风险结果
def
MonitoredRisk
(
t_r2
):
def
MonitoredRisk
(
t_r2
):
MRisk
=
{}
MRisk
=
{}
t_r2
=
t_r2
t_r2
_s
=
str
(
int
(
t_r2
.
replace
(
"
%
"
,
""
))
/
100
)
rules_2
=
{
"t_r2
<='10
%
'"
:
"企业被监控的风险同比其他企业比例较低"
,
rules_2
=
{
"t_r2
_s<='0.1
'"
:
"企业被监控的风险同比其他企业比例较低"
,
"t_r2
>'10
%
' and t_r2<='50
%
'"
:
"经检测,企业有一定可能性被选为税务监控对象"
,
"t_r2
_s>'0.1' and t_r2_s<='0.5
'"
:
"经检测,企业有一定可能性被选为税务监控对象"
,
"t_r2
>'50
%
'"
:
"经检测,企业有很大可能性被选为税务监控对象"
"t_r2
_s>'0.5
'"
:
"经检测,企业有很大可能性被选为税务监控对象"
}
}
for
k2
,
v2
in
rules_2
.
items
():
for
k2
,
v2
in
rules_2
.
items
():
if
eval
(
str
(
k2
)):
if
eval
(
str
(
k2
)):
MRisk
=
{
"score"
:
t_r2
,
"describe"
:
v2
}
MRisk
=
{
"score"
:
t_r2
,
"describe"
:
v2
}
return
MRisk
return
MRisk
# 输入计算出的被稽查风险值,判断被稽查风险结果
# 输入计算出的被稽查风险值,判断被稽查风险结果
def
AuditedRisk
(
t_r3
):
def
AuditedRisk
(
t_r3
):
ARisk
=
{}
ARisk
=
{}
t_r3
=
t_r3
t_r3
_s
=
str
(
int
(
t_r3
.
replace
(
"
%
"
,
""
))
/
100
)
rules_3
=
{
"t_r3
<='10
%
'"
:
"企业被税务稽查的可能性较低"
,
rules_3
=
{
"t_r3
_s<='0.1
'"
:
"企业被税务稽查的可能性较低"
,
"t_r3
>'10
%
' and t_r3<='30
%
'"
:
"企业有一定可能性被税务稽查"
,
"t_r3
_s>'0.1' and t_r3_s<='0.3
'"
:
"企业有一定可能性被税务稽查"
,
"t_r3
>'30
%
'"
:
"企业有很大可能性被税务稽查"
"t_r3
_s>'0.3
'"
:
"企业有很大可能性被税务稽查"
}
}
for
k3
,
v3
in
rules_3
.
items
():
for
k3
,
v3
in
rules_3
.
items
():
if
eval
(
str
(
k3
)):
if
eval
(
str
(
k3
)):
...
@@ -111,15 +111,15 @@ def AuditedRisk(t_r3):
...
@@ -111,15 +111,15 @@ def AuditedRisk(t_r3):
# 输入总体计算的风险异常比例,得到提示语(也可与RiskAbnormal函数合并)
# 输入总体计算的风险异常比例,得到提示语(也可与RiskAbnormal函数合并)
def
information
(
t_r1
):
def
information
(
t_r1
):
info
=
{}
info
=
{}
t_r1
=
t_r1
t_r1
_s
=
str
(
int
(
t_r1
.
replace
(
"
%
"
,
""
))
/
100
)
rules_0
=
{
"t_r1
<='30
%
'"
:
"贵企业的风险异常情况同比其他企业较少,如需更多更详细的诊断服务,请联系我们>>"
,
rules_0
=
{
"t_r1
_s<='0.3
'"
:
"贵企业的风险异常情况同比其他企业较少,如需更多更详细的诊断服务,请联系我们>>"
,
"t_r1
>'30
%
' and t_r1<='60
%
'"
:
"企业的风险异常情况同比其他企业明显偏多,有较大可能性成为税务系统监控的对象,请企业的财税人员参考以下详细检测情况进行自查,如需进行更详细的诊断服务请联系我们>>"
,
"t_r1
_s>'0.3' and t_r1_s<='0.6
'"
:
"企业的风险异常情况同比其他企业明显偏多,有较大可能性成为税务系统监控的对象,请企业的财税人员参考以下详细检测情况进行自查,如需进行更详细的诊断服务请联系我们>>"
,
"t_r1
>'60
%
' and t_r1<='80
%
'"
:
"如果税务局选择企业所在行业进行行业稽查,该企业有一定可能性成为被选案例,请财税人员尽快参照以下比例进行自查,如需进行更详细的诊断服务请联系我们>>"
,
"t_r1
_s>'0.6' and t_r1_s<='0.8
'"
:
"如果税务局选择企业所在行业进行行业稽查,该企业有一定可能性成为被选案例,请财税人员尽快参照以下比例进行自查,如需进行更详细的诊断服务请联系我们>>"
,
"t_r1
>'80
%
'"
:
"如果税务局选择企业所在行业进行行业稽查,该企业有很大可能性成为被选案例,请财税人员尽快参照以下比例进行自查,如需进行更详细的诊断服务请联系我们>>"
"t_r1
_s>'0.8
'"
:
"如果税务局选择企业所在行业进行行业稽查,该企业有很大可能性成为被选案例,请财税人员尽快参照以下比例进行自查,如需进行更详细的诊断服务请联系我们>>"
}
}
for
k0
,
v0
in
rules_0
.
items
():
for
k0
,
v0
in
rules_0
.
items
():
if
eval
(
str
(
k0
)):
if
eval
(
str
(
k0
)):
info
=
{
{
"score"
:
t_r1
,
"describe"
:
v0
}
}
info
=
{
"score"
:
t_r1
,
"describe"
:
v0
}
return
info
return
info
...
@@ -263,6 +263,15 @@ def RiskCompareRule(wx_part):
...
@@ -263,6 +263,15 @@ def RiskCompareRule(wx_part):
else
:
else
:
risk_describe
=
"数据缺失"
risk_describe
=
"数据缺失"
return
risk_describe
return
risk_describe
#风险描述去重
def
getUniqueItems
(
iterable
):
seen
=
set
()
result
=
[]
for
item
in
iterable
:
if
item
not
in
seen
:
seen
.
add
(
item
)
result
.
append
(
item
)
return
result
# 计算所得税隐藏收入风险异常(对所属指标不合格降序排列,展示前三的风险描述信息,计算不合格总和及风险比例)
# 计算所得税隐藏收入风险异常(对所属指标不合格降序排列,展示前三的风险描述信息,计算不合格总和及风险比例)
...
@@ -290,20 +299,18 @@ def IT_YCSR_Risk(dict_all):
...
@@ -290,20 +299,18 @@ def IT_YCSR_Risk(dict_all):
if
s_status1
==
2
:
if
s_status1
==
2
:
part_s1_str_dict
[
s_s1
]
=
s_str
part_s1_str_dict
[
s_s1
]
=
s_str
dissatisfied
.
append
(
s_s1
)
dissatisfied
.
append
(
s_s1
)
print
(
part_s1_str_dict
,
type
(
part_s1_str_dict
))
A_count
=
sum
(
satisfied
)
+
sum
(
dissatisfied
)
# 计算合格与不合格对应指标权重之和(分母)
A_count
=
sum
(
satisfied
)
+
sum
(
dissatisfied
)
# 计算合格与不合格对应指标权重之和(分母)
B_count
=
sum
(
dissatisfied
)
# 计算不合格对应指标权重之和(分子)
B_count
=
sum
(
dissatisfied
)
# 计算不合格对应指标权重之和(分子)
risk_IT_YCSR
=
float
(
"
%.2
f"
%
(
B_count
/
A_count
))
# 计算风险异常比例
risk_IT_YCSR
=
float
(
"
%.2
f"
%
(
B_count
/
A_count
))
# 计算风险异常比例
Risk_IT_YCSR_score
=
str
(
int
(
risk_IT_YCSR
*
100
))
+
"
%
"
# 格式转化
Risk_IT_YCSR_score
=
str
(
int
(
risk_IT_YCSR
*
100
))
+
"
%
"
# 格式转化
part_s1_str_dict
=
sorted
(
part_s1_str_dict
.
items
(),
key
=
lambda
x
:
x
[
0
],
reverse
=
True
)
# 按照权重排序
part_s1_str_dict
=
sorted
(
part_s1_str_dict
.
items
(),
key
=
lambda
x
:
x
[
0
],
reverse
=
True
)
# 按照权重排序
# print(part_s1_str_dict)
p1_describe
=
[]
# 获取风险权重前三提示
p1_describe
=
[]
# 获取风险权重前三提示
for
pt
in
part_s1_str_dict
:
for
pt
in
part_s1_str_dict
:
p1_describe
.
append
(
pt
[
1
])
p1_describe
.
append
(
pt
[
1
])
p1_describe
=
getUniqueItems
(
p1_describe
)
#风险描述去重
if
len
(
p1_describe
)
>
3
:
if
len
(
p1_describe
)
>
3
:
p1_describe
=
p1_describe
[:
3
]
p1_describe
=
p1_describe
[:
3
]
# 风险类别获取
# 风险类别获取
print
(
B_count
,
"--------------------------"
)
risk_describe
=
RiskCompareRule
(
B_count
)
risk_describe
=
RiskCompareRule
(
B_count
)
else
:
else
:
Risk_IT_YCSR_score
=
"0
%
"
Risk_IT_YCSR_score
=
"0
%
"
...
@@ -340,7 +347,7 @@ def IT_XZFY_Risk(dict_all):
...
@@ -340,7 +347,7 @@ def IT_XZFY_Risk(dict_all):
if
s_status2
==
1
:
if
s_status2
==
1
:
satisfied
.
append
(
s_s2
)
satisfied
.
append
(
s_s2
)
if
s_status2
==
2
:
if
s_status2
==
2
:
part_s2_str_dict
[
s_s2
]
=
[
s_str2
]
part_s2_str_dict
[
s_s2
]
=
s_str2
dissatisfied
.
append
(
s_s2
)
dissatisfied
.
append
(
s_s2
)
A_count
=
sum
(
satisfied
)
+
sum
(
dissatisfied
)
# 计算合格与不合格对应指标权重之和(分母)
A_count
=
sum
(
satisfied
)
+
sum
(
dissatisfied
)
# 计算合格与不合格对应指标权重之和(分母)
B_count
=
sum
(
dissatisfied
)
# 计算不合格对应指标权重之和(分子)
B_count
=
sum
(
dissatisfied
)
# 计算不合格对应指标权重之和(分子)
...
@@ -350,6 +357,7 @@ def IT_XZFY_Risk(dict_all):
...
@@ -350,6 +357,7 @@ def IT_XZFY_Risk(dict_all):
p2_describe
=
[]
# 获取风险权重前三提示
p2_describe
=
[]
# 获取风险权重前三提示
for
pt
in
part_s2_str_dict
:
for
pt
in
part_s2_str_dict
:
p2_describe
.
append
(
pt
[
1
])
p2_describe
.
append
(
pt
[
1
])
p2_describe
=
getUniqueItems
(
p2_describe
)
if
len
(
p2_describe
)
>
3
:
if
len
(
p2_describe
)
>
3
:
p2_describe
=
p2_describe
[:
3
]
p2_describe
=
p2_describe
[:
3
]
# 风险类别获取
# 风险类别获取
...
@@ -388,7 +396,7 @@ def IT_XZCB_Risk(dict_all):
...
@@ -388,7 +396,7 @@ def IT_XZCB_Risk(dict_all):
if
s_status1
==
1
:
if
s_status1
==
1
:
satisfied
.
append
(
s_s1
)
satisfied
.
append
(
s_s1
)
if
s_status1
==
2
:
if
s_status1
==
2
:
part_s1_str_dict
[
s_s1
]
=
[
s_str
]
part_s1_str_dict
[
s_s1
]
=
s_str
dissatisfied
.
append
(
s_s1
)
dissatisfied
.
append
(
s_s1
)
A_count
=
sum
(
satisfied
)
+
sum
(
dissatisfied
)
# 计算合格与不合格对应指标权重之和(分母)
A_count
=
sum
(
satisfied
)
+
sum
(
dissatisfied
)
# 计算合格与不合格对应指标权重之和(分母)
B_count
=
sum
(
dissatisfied
)
# 计算不合格对应指标权重之和(分子)
B_count
=
sum
(
dissatisfied
)
# 计算不合格对应指标权重之和(分子)
...
@@ -398,6 +406,7 @@ def IT_XZCB_Risk(dict_all):
...
@@ -398,6 +406,7 @@ def IT_XZCB_Risk(dict_all):
p1_describe
=
[]
# 获取风险权重前三提示
p1_describe
=
[]
# 获取风险权重前三提示
for
pt
in
part_s1_str_dict
:
for
pt
in
part_s1_str_dict
:
p1_describe
.
append
(
pt
[
1
])
p1_describe
.
append
(
pt
[
1
])
p1_describe
=
getUniqueItems
(
p1_describe
)
if
len
(
p1_describe
)
>
3
:
if
len
(
p1_describe
)
>
3
:
p1_describe
=
p1_describe
[:
3
]
p1_describe
=
p1_describe
[:
3
]
# 风险类别获取
# 风险类别获取
...
@@ -437,7 +446,7 @@ def VAT_XKFP_Risk(dict_all):
...
@@ -437,7 +446,7 @@ def VAT_XKFP_Risk(dict_all):
if
s_status1
==
1
:
if
s_status1
==
1
:
satisfied
.
append
(
s_s1
)
satisfied
.
append
(
s_s1
)
if
s_status1
==
2
:
if
s_status1
==
2
:
part_s1_str_dict
[
s_s1
]
=
[
s_str
]
part_s1_str_dict
[
s_s1
]
=
s_str
dissatisfied
.
append
(
s_s1
)
dissatisfied
.
append
(
s_s1
)
A_count
=
sum
(
satisfied
)
+
sum
(
dissatisfied
)
# 计算合格与不合格对应指标权重之和(分母)
A_count
=
sum
(
satisfied
)
+
sum
(
dissatisfied
)
# 计算合格与不合格对应指标权重之和(分母)
B_count
=
sum
(
dissatisfied
)
# 计算不合格对应指标权重之和(分子)
B_count
=
sum
(
dissatisfied
)
# 计算不合格对应指标权重之和(分子)
...
@@ -447,6 +456,7 @@ def VAT_XKFP_Risk(dict_all):
...
@@ -447,6 +456,7 @@ def VAT_XKFP_Risk(dict_all):
p1_describe
=
[]
# 获取风险权重前三提示
p1_describe
=
[]
# 获取风险权重前三提示
for
pt
in
part_s1_str_dict
:
for
pt
in
part_s1_str_dict
:
p1_describe
.
append
(
pt
[
1
])
p1_describe
.
append
(
pt
[
1
])
p1_describe
=
getUniqueItems
(
p1_describe
)
if
len
(
p1_describe
)
>
3
:
if
len
(
p1_describe
)
>
3
:
p1_describe
=
p1_describe
[:
3
]
p1_describe
=
p1_describe
[:
3
]
# 风险类别获取
# 风险类别获取
...
@@ -486,7 +496,7 @@ def VAT_XZJX_Risk(dict_all):
...
@@ -486,7 +496,7 @@ def VAT_XZJX_Risk(dict_all):
if
s_status1
==
1
:
if
s_status1
==
1
:
satisfied
.
append
(
s_s1
)
satisfied
.
append
(
s_s1
)
if
s_status1
==
2
:
if
s_status1
==
2
:
part_s1_str_dict
[
s_s1
]
=
[
s_str
]
part_s1_str_dict
[
s_s1
]
=
s_str
dissatisfied
.
append
(
s_s1
)
dissatisfied
.
append
(
s_s1
)
A_count
=
sum
(
satisfied
)
+
sum
(
dissatisfied
)
# 计算合格与不合格对应指标权重之和(分母)
A_count
=
sum
(
satisfied
)
+
sum
(
dissatisfied
)
# 计算合格与不合格对应指标权重之和(分母)
B_count
=
sum
(
dissatisfied
)
# 计算不合格对应指标权重之和(分子)
B_count
=
sum
(
dissatisfied
)
# 计算不合格对应指标权重之和(分子)
...
@@ -496,6 +506,7 @@ def VAT_XZJX_Risk(dict_all):
...
@@ -496,6 +506,7 @@ def VAT_XZJX_Risk(dict_all):
p1_describe
=
[]
# 获取风险权重前三提示
p1_describe
=
[]
# 获取风险权重前三提示
for
pt
in
part_s1_str_dict
:
for
pt
in
part_s1_str_dict
:
p1_describe
.
append
(
pt
[
1
])
p1_describe
.
append
(
pt
[
1
])
p1_describe
=
getUniqueItems
(
p1_describe
)
if
len
(
p1_describe
)
>
3
:
if
len
(
p1_describe
)
>
3
:
p1_describe
=
p1_describe
[:
3
]
p1_describe
=
p1_describe
[:
3
]
# 风险类别获取
# 风险类别获取
...
@@ -535,7 +546,7 @@ def VAT_YCXX_Risk(dict_all):
...
@@ -535,7 +546,7 @@ def VAT_YCXX_Risk(dict_all):
if
s_status1
==
1
:
if
s_status1
==
1
:
satisfied
.
append
(
s_s1
)
satisfied
.
append
(
s_s1
)
if
s_status1
==
2
:
if
s_status1
==
2
:
part_s1_str_dict
[
s_s1
]
=
[
s_str
]
part_s1_str_dict
[
s_s1
]
=
s_str
dissatisfied
.
append
(
s_s1
)
dissatisfied
.
append
(
s_s1
)
A_count
=
sum
(
satisfied
)
+
sum
(
dissatisfied
)
# 计算合格与不合格对应指标权重之和(分母)
A_count
=
sum
(
satisfied
)
+
sum
(
dissatisfied
)
# 计算合格与不合格对应指标权重之和(分母)
B_count
=
sum
(
dissatisfied
)
# 计算不合格对应指标权重之和(分子)
B_count
=
sum
(
dissatisfied
)
# 计算不合格对应指标权重之和(分子)
...
@@ -545,6 +556,7 @@ def VAT_YCXX_Risk(dict_all):
...
@@ -545,6 +556,7 @@ def VAT_YCXX_Risk(dict_all):
p1_describe
=
[]
# 获取风险权重前三提示
p1_describe
=
[]
# 获取风险权重前三提示
for
pt
in
part_s1_str_dict
:
for
pt
in
part_s1_str_dict
:
p1_describe
.
append
(
pt
[
1
])
p1_describe
.
append
(
pt
[
1
])
p1_describe
=
getUniqueItems
(
p1_describe
)
if
len
(
p1_describe
)
>
3
:
if
len
(
p1_describe
)
>
3
:
p1_describe
=
p1_describe
[:
3
]
p1_describe
=
p1_describe
[:
3
]
# 风险类别获取
# 风险类别获取
...
@@ -583,7 +595,7 @@ def CT_FX_Risk(dict_all):
...
@@ -583,7 +595,7 @@ def CT_FX_Risk(dict_all):
if
s_status1
==
1
:
if
s_status1
==
1
:
satisfied
.
append
(
s_s1
)
satisfied
.
append
(
s_s1
)
if
s_status1
==
2
:
if
s_status1
==
2
:
part_s1_str_dict
[
s_s1
]
=
[
s_str
]
part_s1_str_dict
[
s_s1
]
=
s_str
dissatisfied
.
append
(
s_s1
)
dissatisfied
.
append
(
s_s1
)
A_count
=
sum
(
satisfied
)
+
sum
(
dissatisfied
)
# 计算合格与不合格对应指标权重之和(分母)
A_count
=
sum
(
satisfied
)
+
sum
(
dissatisfied
)
# 计算合格与不合格对应指标权重之和(分母)
B_count
=
sum
(
dissatisfied
)
# 计算不合格对应指标权重之和(分子)
B_count
=
sum
(
dissatisfied
)
# 计算不合格对应指标权重之和(分子)
...
@@ -593,6 +605,7 @@ def CT_FX_Risk(dict_all):
...
@@ -593,6 +605,7 @@ def CT_FX_Risk(dict_all):
p1_describe
=
[]
# 获取风险权重前三提示
p1_describe
=
[]
# 获取风险权重前三提示
for
pt
in
part_s1_str_dict
:
for
pt
in
part_s1_str_dict
:
p1_describe
.
append
(
pt
[
1
])
p1_describe
.
append
(
pt
[
1
])
p1_describe
=
getUniqueItems
(
p1_describe
)
if
len
(
p1_describe
)
>
3
:
if
len
(
p1_describe
)
>
3
:
p1_describe
=
p1_describe
[:
3
]
p1_describe
=
p1_describe
[:
3
]
# 风险类别获取
# 风险类别获取
...
@@ -631,16 +644,18 @@ def ALLT_FX_Risk(dict_all):
...
@@ -631,16 +644,18 @@ def ALLT_FX_Risk(dict_all):
if
s_status1
==
1
:
if
s_status1
==
1
:
satisfied
.
append
(
s_s1
)
satisfied
.
append
(
s_s1
)
if
s_status1
==
2
:
if
s_status1
==
2
:
part_s1_str_dict
[
s_s1
]
=
[
s_str
]
part_s1_str_dict
[
s_s1
]
=
s_str
dissatisfied
.
append
(
s_s1
)
dissatisfied
.
append
(
s_s1
)
A_count
=
sum
(
satisfied
)
+
sum
(
dissatisfied
)
# 计算合格与不合格对应指标权重之和(分母)
A_count
=
sum
(
satisfied
)
+
sum
(
dissatisfied
)
# 计算合格与不合格对应指标权重之和(分母)
B_count
=
sum
(
dissatisfied
)
# 计算不合格对应指标权重之和(分子)
B_count
=
sum
(
dissatisfied
)
# 计算不合格对应指标权重之和(分子)
risk_ALLT_FX
=
float
(
"
%.2
f"
%
(
B_count
/
A_count
))
# 计算风险异常比例
risk_ALLT_FX
=
float
(
"
%.2
f"
%
(
B_count
/
A_count
))
# 计算风险异常比例
Risk_ALLT_FX_score
=
str
(
int
(
risk_ALLT_FX
*
100
))
+
"
%
"
# 格式转化
Risk_ALLT_FX_score
=
str
(
int
(
risk_ALLT_FX
*
100
))
+
"
%
"
# 格式转化
part_s1_str_dict
=
sorted
(
part_s1_str_dict
.
items
(),
key
=
lambda
x
:
x
[
0
],
reverse
=
True
)
# 按照权重排序
part_s1_str_dict
=
sorted
(
part_s1_str_dict
.
items
(),
key
=
lambda
x
:
x
[
0
],
reverse
=
True
)
# 按照权重排序
p1_describe
=
[]
# 获取风险权重前三提示
p1_describe
=
[]
# 获取风险权重前三提示
for
pt
in
part_s1_str_dict
:
for
pt
in
part_s1_str_dict
:
p1_describe
.
append
(
pt
[
1
])
p1_describe
.
append
(
pt
[
1
])
p1_describe
=
getUniqueItems
(
p1_describe
)
if
len
(
p1_describe
)
>
3
:
if
len
(
p1_describe
)
>
3
:
p1_describe
=
p1_describe
[:
3
]
p1_describe
=
p1_describe
[:
3
]
# 风险类别获取
# 风险类别获取
...
@@ -696,6 +711,6 @@ def report():
...
@@ -696,6 +711,6 @@ def report():
print
(
result
,
"------------------------------"
)
print
(
result
,
"------------------------------"
)
return
jsonify
(
result
)
return
jsonify
(
result
)
server
.
run
(
host
=
'121.0.0.1'
,
port
=
80
,
debug
=
True
)
server
.
run
(
host
=
'121.0.0.1'
,
port
=
80
,
debug
=
True
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment